LL65HE-CC-175/250/350

65 W Constant Current LED driver

• Very high efficiency up to 94%

- Very low current ripple, complying with IEEE 1789 recommendation
- Suitable for emergency lighting applications
- Long lifetime up to 100 000 h
- Maximum output voltage limited to 250 V
- Driver protection Class I
- · Ideal solution for Class I luminaires, suitable for Class II luminaires too*

65 W 220 - 240 V 0 / 50 - 60 Hz

Product code: 5728

* See page 4 for details.

Functional Description

• Selectable constant current output: 175 mA / 250 mA / 350 mA

Mains Characteristics

Voltage range 198 VAC - 264 VAC 176 VDC - 280 VDC DC range

starting voltage > 190 VDC Mains current at full load 0.29 - 0.32 A0 / 50 Hz - 60 Hz Frequency THD at full power < 10 %

Leakage current to earth < 0.3 mA

Tested surge protection 1 kV L-N, 2 kV L-GND (IEC 61000-4-5)

Tested fast transient protection 4 kV (IEC 61000-4-4)

Insulation between circuits & driver case

Mains circuit - Output Non-isolated Mains and output - Driver case Basic insulation

Load Output (non-isolated)

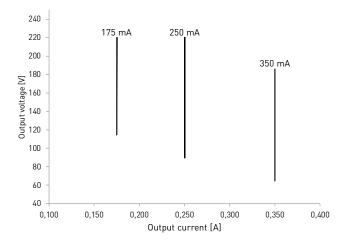
Output current (I_out) 175 mA / 250 mA / 350 mA

±5% Accuracy

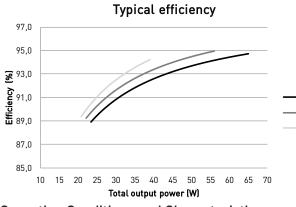
Ripple < 1 %* at ≤ 120 Hz

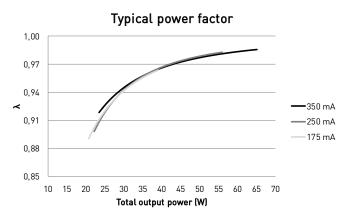
*) Low frequency, LED load: Cree MX3 LEDs

U_{nut} (max) (abnormal)


EOF, (EL use) > 0.98 x output current with AC supply

I _{LED}	175 mA	250 mA	350 mA
P _{Rated}	38,5 W	55 W	65 W
U _{LED}	115 – 220 V	90 – 220 V	65 – 186 V
PF (λ) at full load	0.98	0.98	0.98
Efficiency (n) at full load	94 %	94 %	94 %


LL65HE-CC-175/250/350



Operating window

Driver performance

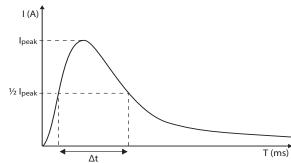
Operating Conditions and Characteristics

 $\mbox{Highest allowed } \mbox{t}_{\mbox{Γ}} \mbox{ point temperature}$ T life (50 000 h) temperature Ambient temperature range* Storage temperature range Maximum relative humidity Lifetime (90 % survival rate)

75 °C 75 °C -25 °C ... +50 °C* -40 °C ... +80 °C No condensation 100 000 h, at $t_c = 65$ °C 70 000 h, at $t_c = 70 \, ^{\circ}\text{C}$ 50 000 h, at $t_c = 75 \, ^{\circ}\text{C}$

•350 mA

-250 mA


175 mA

Quantity of drivers per miniature circuit breaker 16 A Type C

Based on inrush current I _{peak}	Typ. peak inrush current I _{peak}	1/2 value time, Δt	Calculated energy, I _{peak} ² Δt
48 pcs.	33 A	162 µs	0.128 A ² s

CONVERSION TABLE FOR OTHER TYPES OF MINIATURE CIRCUIT BREAKER

MCB type	Relative quantity of LED drivers	
B 10 A	37 %	
B 16 A	60 %	
B 20 A	75 %	
C 10 A	62 %	
C 16 A	100 % (see table above)	
C 20 A	125 %	

CONTINOUS CURRENT

Total continous current of the drivers and installation environment must always be considered and taken into calculations when installing drivers behind miniature circuit breaker. Example calculation of total drivers amount limited by continous current: $I_{cont} = (16 \text{ A } I_{nom, Ta}) / \text{"nominal mains current with full limited by continuous currents}$ load") x 0.76). This calculation is an example according to recommended precautions due to multiple adjacent circuit breakers (> 9 MCBs) and installation environment (T₃ 30 degrees); variables may vary according to the use case. Both inrush current and continous current calculations are based on ABB S200 series circuit breakers. More specific information in ABB series S200 circuit breaker documentation.

NOTE! Type C MCB's are strongly recommended to use with LED lighting. Please see more details in "MCB information" document in each driver product page in "downloads & links" section.

^{*)} For other than independent use, higher t, of the controlgear possible as long as highest allowed t, point temperature is not exceeded

LL65HE-CC-175/250/350

Connections and Mechanical Data

Wire size

Wire type

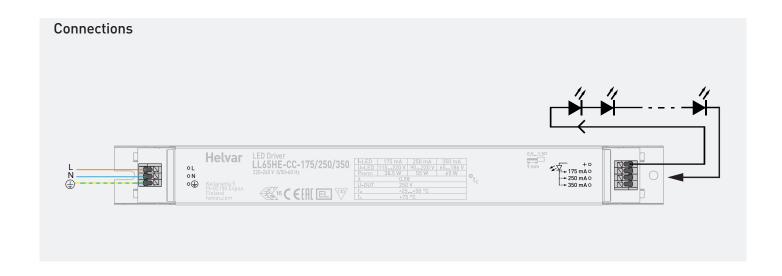
Wire insulation

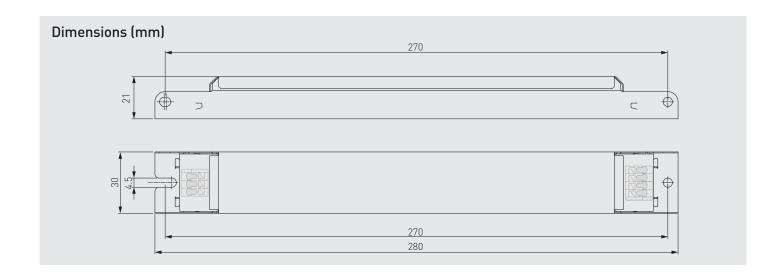
Maximum driver to LED wire length

Weight

IP rating

 $0.5 \text{ mm}^2 - 1.5 \text{ mm}^2$


Solid core and fine-stranded


According to EN 60598

1.5 m

187 g

IP20

Information and conformity

LL65HE-CC-175/250/350 LED driver is suited for built-in usage in luminaires. With LL1x2130-SR strain reliefs, independent use is possible too (see the LL1x2130-SR datasheet for details). In order to have safe and reliable LED driver operation, the LED luminaires will need to comply with the relevant standards and regulations (e.g. IEC/EN 60598-1). The LED luminaire shall be designed to adequately protect the LED driver from dust, moisture and pollution. The luminaire manufacturer is responsible for the correct choice and installation of the LED drivers according to the application and product datasheets. Operating conditions of the LED drivers may never exceed the specifications as per the product datasheet.

Installation & operation

Maximum ambient and t temperature:

- For built-in components inside luminaires, the tambient temperature range is a guideline given for the optimum operating environment. However, integrator must always ensure proper thermal management (i.e. mounting base of the driver, air flow etc.) so that the to point temperature does not exceed the t maximum limit in any circumstance.
- Reliable operation and lifetime is only guaranteed if the maximum t_c point temperature is not exceeded under the conditions of use.

Current setting

LL65HE-CC-175/250/350 LED driver features a constant current output (175 mA / 250 mA / 350 mA) selectable via output terminals.

LED driver earthing

- LL65HE-CC-175/250/350 LED driver is a protective Class I device and designed for Class I luminaires.
- If used inside Class I luminaires, this LED driver must always have the protective earth cable connected for safety reasons.
- The driver is designed to be used inside Class I luminaires. For usage inside Class II luminaires, the safety of the luminaire shall be ensured through double/reinforced insulation of live parts and through supplementary insulation of conductive parts of the casing, or any conductive parts connected to the casing, as the casing is only basic insulated from the live parts. The earth connector of the driver shall be left unconnected and there shall be no protective earth terminals in the luminaire terminal block to fulfill the requirements of IEC/EN 60598-1 for Class II luminaires. The EMC performance of the driver change when left unearthed, so it is always the responsibility of the integrator to take measures and necessary actions, for example by luminaire design to ensure the assembled luminaire complies with latest EMC standard.

Miniature Circuit Breakers (MCB)

- Type-C MCB's with trip characteristics in according to EN 60898 are recommended.
- Please see more details in "MCB information" document in each driver product page in "downloads & links" section.

Lamp failure functionality

No load

When open load is detected, driver limits output voltage according to Uout (max) (abnormal).

Short circuit

Driver can withstand output short circuit.

Conformity & standards

General and safety requirements	EN 61347-1: 2015
Particular safety requirements for DC	EN 61347-2-13:
or AC supplied electronic control gear	2014 + A1:2017
for LED modules	
Additional safety requirements for AC or	EN 61347-2-13:
DC supplied electronic controlgear for	2014, Annex J
emergency lighting	
Thermal protection class	EN 61347, C5e
Mains current harmonics	EN 61000-3-2:
	2014
Limits for voltage fluctuations and flicker	EN 61000-3-3: 2013
Radio frequency interference	EN 55015: 2013
	+ A1:2015
Immunity standard	EN 61547: 2009
Performance requirements	EN 62384: 2006+
	A1:2009
Recommended Practices for Modulating	IEEE 1789-2015
Current in High-Brightness LEDs for	
Mitigating Health Risks to Viewers	
Compliant with relevant EU directives	
RoHS/REACH compliant	
ENEC and CE marked	

Label symbols

AC/DC supplied electronic control gear for emergency lighting purposes intended for connection to a centralized emergency power supply.

Thermally controlled control gear, incorporating means of protection against overheating to prevent the case temperature under any conditions of use from exceeding 130 °C.